Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Dis Markers ; 2021: 6803510, 2021.
Article in English | MEDLINE | ID: covidwho-1443673

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently the most significant public health threat worldwide. Patients with severe COVID-19 usually have pneumonia concomitant with local inflammation and sometimes a cytokine storm. Specific components of the SARS-CoV-2 virus trigger lung inflammation, and recruitment of immune cells to the lungs exacerbates this process, although much remains unknown about the pathogenesis of COVID-19. Our study of lung type II pneumocyte cells (A549) demonstrated that ORF7, an open reading frame (ORF) in the genome of SARS-CoV-2, induced the production of CCL2, a chemokine that promotes the chemotaxis of monocytes, and decreased the expression of IL-8, a chemokine that recruits neutrophils. A549 cells also had an increased level of IL-6. The results of our chemotaxis Transwell assay suggested that ORF7 augmented monocyte infiltration and reduced the number of neutrophils. We conclude that the ORF7 of SARS-CoV-2 may have specific effects on the immunological changes in tissues after infection. These results suggest that the functions of other ORFs of SARS-CoV-2 should also be comprehensively examined.


Subject(s)
COVID-19/metabolism , Chemotaxis , Monocytes/pathology , Neutrophils/pathology , Open Reading Frames/physiology , Pneumonia/pathology , Viral Proteins/metabolism , A549 Cells , Chemokine CCL2/metabolism , Humans , In Vitro Techniques , Monocytes/immunology , Monocytes/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Pneumonia/immunology , Pneumonia/metabolism , SARS-CoV-2/metabolism , Viral Proteins/genetics
2.
Int Immunopharmacol ; 97: 107702, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1198831

ABSTRACT

BACKGROUND: The clinical characteristics and treatment of patients who tested positive for COVID-19 after recovery remained elusive. Effective antiviral therapy is important for tackling these patients. We assessed the efficacy and safety of favipiravir for treating these patients. METHODS: This is a multicenter, open-label, randomized controlled trial in SARS-CoV-2 RNA re-positive patients. Patients were randomly assigned in a 2:1 ratio to receive either favipiravir, in addition to standard care, or standard care alone. The primary outcome was time to achieve a consecutive twice (at intervals of more than 24 h) negative RT-PCR result for SARS-CoV-2 RNA in nasopharyngeal swab and sputum sample. RESULTS: Between March 27 and May 9, 2020, 55 patients underwent randomization; 36 were assigned to the favipiravir group and 19 were assigned to the control group. Favipiravir group had a significantly shorter time from start of study treatment to negative nasopharyngeal swab and sputum than control group (median 17 vs. 26 days); hazard ratio 2.1 (95% CI [1.1-4.0], p = 0.038). The proportion of virus shedding in favipiravir group was higher than control group (80.6% [29/36] vs. 52.6% [10/19], p = 0.030, respectively). C-reactive protein decreased significantly after treatment in the favipiravir group (p = 0.016). The adverse events were generally mild and self-limiting. CONCLUSION: Favipiravir was safe and superior to control in shortening the duration of viral shedding in SARS-CoV-2 RNA recurrent positive after discharge. However, a larger scale and randomized, double-blind, placebo-controlled trial is required to confirm our conclusion.


Subject(s)
Amides/administration & dosage , Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , Pyrazines/administration & dosage , Reinfection/drug therapy , Administration, Oral , Adult , Aged , Amides/adverse effects , Antiviral Agents/adverse effects , COVID-19/blood , Female , Humans , Lymphocyte Subsets/drug effects , Male , Middle Aged , Patient Discharge , Pyrazines/adverse effects , RNA, Viral/analysis , RNA, Viral/drug effects , Reinfection/blood , SARS-CoV-2/drug effects , Treatment Outcome
3.
Infect Dis Poverty ; 10(1): 45, 2021 Mar 31.
Article in English | MEDLINE | ID: covidwho-1166939

ABSTRACT

BACKGROUND: The management of discharge COVID-19 patients with recurrent positive SARS-CoV-2 RNA is challenging. However, there are fewer scientific dissertations about the risk of recurrent positive. The aim of this study was to explore the relationship between SARS-COV-2 RNA positive duration (SPD) and the risk of recurrent positive. METHODS: This case-control multi-center study enrolled participants from 8 Chinese hospital including 411 participants (recurrent positive 241). Using unadjusted and multivariate-adjusted logistic regression analyses, generalized additive model with a smooth curve fitting, we evaluated the associations between SPD and risk of recurrent positive. Besides, subgroup analyses were performed to explore the potential interactions. RESULTS: Among recurrent positive patients, there were 121 females (50.2%), median age was 50 years old [interquartile range (IQR): 38-63]. In non-adjusted model and adjusted model, SPD was associated with an increased risk of recurrent positive (fully-adjusted model: OR = 1.05, 95% CI: 1.02-1.08, P = 0.001); the curve fitting was not significant (P = 0.286). Comparing with SPD < 14 days, the risk of recurrent positive in SPD > 28 days was risen substantially (OR = 3.09, 95% CI: 1.44-6.63, P = 0.004). Interaction and stratified analyses showed greater effect estimates of SPD and risk of recurrent positive in the hypertension, low monocyte count and percentage patients (P for interaction = 0.008, 0.002, 0.036, respectively). CONCLUSION: SPD was associated with a higher risk of recurrent positive and especially SPD > 28 day had a two-fold increase in the relative risk of re-positive as compared with SPD < 14 day. What's more, the risk may be higher among those with hypertension and lower monocyte count or percentage.


Subject(s)
COVID-19/virology , RNA, Viral/isolation & purification , SARS-CoV-2/isolation & purification , Adult , COVID-19/epidemiology , COVID-19/pathology , Case-Control Studies , Female , Hospitalization , Humans , Male , Middle Aged , Pharynx/virology , RNA, Viral/genetics , Recurrence , Risk Factors , SARS-CoV-2/genetics , Time Factors , Virus Shedding
4.
Medicine (Baltimore) ; 100(4): e24441, 2021 Jan 29.
Article in English | MEDLINE | ID: covidwho-1125892

ABSTRACT

ABSTRACT: To develop a useful score for predicting the prognosis of severe corona virus disease 2019 (COVID-19) patients.We retrospectively analyzed patients with severe COVID-19 who were admitted from February 10, 2020 to April 5, 2020. First, all patients were randomly assigned to a training cohort or a validation cohort. By univariate analysis of the training cohort, we developed combination scores and screened the superior score for predicting the prognosis. Subsequently, we identified the independent factors influencing prognosis. Finally, we demonstrated the predictive efficiency of the score in validation cohort.A total of 145 patients were enrolled. In the training cohort, nonsurvivors had higher levels of lactic dehydrogenase than survivors. Among the 7 combination scores that were developed, lactic dehydrogenase-lymphocyte ratio (LLR) had the highest area under the curve (AUC) value for predicting prognosis, and it was associated with the incidence of liver injury, renal injury, and higher disseminated intravascular coagulation (DIC) score on admission. Univariate logistic regression analysis revealed that C-reactive protein, DIC score ≥2 and LLR >345 were the factors associated with prognosis. Multivariate analysis showed that only LLR >345 was an independent risk factor for prognosis (odds ratio [OR] = 9.176, 95% confidence interval [CI]: 2.674-31.487, P < .001). Lastly, we confirmed that LLR was also an independent risk factor for prognosis in severe COVID-19 patients in the validation cohort where the AUC was 0.857 (95% CI: 0.718-0.997).LLR is an accurate predictive score for poor prognosis of severe COVID-19 patients.


Subject(s)
COVID-19/blood , L-Lactate Dehydrogenase/blood , Lymphocyte Count , Aged , COVID-19/mortality , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Prognosis , Retrospective Studies , Risk Factors , SARS-CoV-2 , Severity of Illness Index
5.
China Tropical Medicine ; 20(8):772-775, 2020.
Article in Chinese | GIM | ID: covidwho-860915

ABSTRACT

Objective: To analyze the clinical characteristics, cardiac injury characteristics and early warning indexes of severe type in patients with COVID-19, so as to provide data for the evaluation, clinical treatment and prognosis of COVID-19 patients.

6.
Ann Transl Med ; 8(17): 1084, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-842908

ABSTRACT

BACKGROUND: The characteristics, significance and potential cause of positive SARS-CoV-2 diagnoses in recovered coronavirus disease 2019 (COVID-19) patients post discharge (re-detectable positive, RP) remained elusive. METHODS: A total of 262 COVID-19 patients discharged from January 23 to February 25, 2020 were enrolled into this study. RP and non-RP (NRP) patients were grouped according to disease severity, and the characterization at re-admission was analyzed. SARS-CoV-2 RNA and plasma antibody levels were measured, and all patients were followed up for at least 14 days, with a cutoff date of March 10, 2020. RESULTS: A total of 14.5% of RP patients were detected. These patients were characterized as young and displayed mild and moderate conditions compared to NRP patients while no severe patients were RP. RP patients displayed fewer symptoms but similar plasma antibody levels during their hospitalization compared to NRP patients. Upon hospital readmission, these patients showed no obvious symptoms or disease progression. All 21 close contacts of RP patients were tested negative for viral RNA and showed no suspicious symptoms. Eighteen out of 24 of RNA-negative samples detected by the commercial kit were tested positive for viral RNA using a hyper-sensitive method, suggesting that these patients were potential carriers of the virus after recovery from COVID-19. CONCLUSIONS: Our results indicated that young patients, with a mild diagnosis of COVID-19 are more likely to display RP status after discharge. These patients show no obvious symptoms or disease progression upon re-admission. More sensitive RNA detection methods are required to monitor these patients. Our findings provide information and evidence for the management of convalescent COVID-19 patients.

SELECTION OF CITATIONS
SEARCH DETAIL